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Abstract
We recently reported the existence of a new type of modulation instability
of the waves on the surface of ideal fluid (2006 J. Phys. A: Math. Gen.
39 L529). To this end, we considered the system of two equations of motion for
the amplitude of the envelope of the first harmonic and for the nonoscillating
wave component (zero harmonic) in the framework of the method of multiple
scales and the Euler equations of motion. Here, this new type of modulation
instability is reproduced with the use of the Zakharov equations for the Fourier
amplitudes of the first and zero harmonics on the basis of the Hamiltonian
formalism.

PACS numbers: 05.45.−a, 05.45.Yv, 47.35.+i

1. Introduction

Stokes’ [1] weakly nonlinear periodic solutions to the nonlinear equations describing the wave
motion in conservative media are unstable to small harmonic long-wavelength perturbations.
This instability was originally discovered for the waves on the surface of an ideal fluid by
Lighthill [2], Zakharov [3, 4], Benjamin and Feir [5], Whitham [6], Hasimoto and Ono [7].
Now it is known as the Benjamin–Feir modulation instability (BF MI). It was also found in
many other nonlinear media and is a general physical phenomenon. As a result of works
[3, 4], it became clear that the analogy between the behaviour of waves of small amplitudes in
various media can be explained by a likeness of expansions of the Hamiltonian for waves of
the different nature in a power series in a small nonlinearity and the further reformulation of
the Euler equations of motion for various waves in the formally identical Hamilton equations.
The Hamiltonian theory of waves on the surface of a fluid and in plasma became only the first
examples of the general program [3, 4] on the expansion of a Hamiltonian formalism of the
nonlinear mechanics of particles onto the wave motion in a continuous medium: the searching
for the pairs of canonical variables, the construction of a Hamiltonian of waves in the physical
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and Fourier spaces, the determination of the first nonlinear terms of its expansion in a series,
and the following derivation of the simplified equations of motion for amplitudes of the lowest
harmonics as the Hamilton equations obtained from the Hamiltonian expanded in a series with
the truncated upper harmonics (Zakharov equations). In particular, the MI can be investigated
from the equations and the coefficients obtained in [3, 4] in the case of a fluid infinite depth.
Moreover, a more general type of MI was found in [3, 4] on the basis of interaction of N waves
[8], e.g., type II MI [9] with five interacting waves.

The theory [3, 4] was also applied to the case of a fluid of finite depth [10]. Here,
except for the strong complication of calculations due to the dependence of coefficients of the
Hamiltonian on depth h, there is also the basic difference consisting of the appearance of a
non-oscillating component (the zero harmonic which varies, by the terminology of the method
of multiple scales, in slower time) among Fourier harmonics. Such component is equal to zero
in the case of infinite depth in the considered order of precision. Upper harmonics are removed
from the Hamiltonian and equations of motion by means of the reduction of the Hamiltonian.
But to make the same with the zero harmonics is possible only at additional assumptions about
the character of its time dependence. The elimination of the equation for the zero harmonic
can lead to a decrease of the order of the dispersion equation and, thus, to losses of a part of
its solutions. The necessity of an accurate treatment of the equation for the zero harmonic
was also discussed outside of the Hamiltonian approach [11–14]. In [10], the reduction of a
Hamiltonian was not executed and the equation for a zero harmonic was maintained, which
would allow one to consider a wide spectrum of problems. However, the analytic evaluations
involved only the zone of wave vectors of perturbations � small in comparison with wave
vectors of the first harmonic k0. We may assume that, on the influence of the first harmonic
of a perturbation with the wave vector � ∼ k0, the 0-harmonic with a wave vector of 0 will
respond as a result of the nonlinear resonant interaction [8, 15] if it is possible in the system
and the law of conservation of energy is realized.

Recently in works [16, 17] concerning the same problem as in [10] but on the basis of the
system obtained [18, 19] from the Euler equations of motion and at the refusal from additional
artificial assumptions about a character of the dependence of the zero harmonic on time, it is
discovered that, at � � k0, there is really a band of MI. There arises a question whether this
can be obtained in the Hamiltonian approach [10]. Work [10] is written very shortly. We have
checked and reproduced all the results of work [10] in more direct way. At the same time,
some little inaccuracies have been specified. Their elimination allows us to describe the type
of MI indicated in [17] within the Hamiltonian method as well.

2. The Hamiltonian, its formal expansion in an integro-power series and equations of
motion in the Fourier representation

In the Hamilton formalism for potential nonlinear waves, the equation of motion for the
‘complex normal coordinate’ a(k, t) can be written in the form of the Hamilton equation

∂a(k, t)

∂t
= −i

δH

δa(k, t)
(1)

and a complex conjugate equation. Here, k is a horizontal wave vector k = (kx, ky), and H
is the Hamiltonian of waves as a functional of a(k) and a(k). For waves on a surface of an
ideal fluid, the profile of a wave (an increase and a decrease of the surface) η(x, t) is related
to a(k, t) by the formula

η(x, t) = 1

2π

∫ (
ω(k)

2g

)1/2

(a(k, t) + a(−k, t)) eikx dk, ω(k) =
√

g|k| tanh(|k|h),

2
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where g is the gravitational acceleration, h is the depth of a fluid and x = (x, y) is a vector of
horizontal coordinates.

In the variables a(k), a(k), the Hamiltonian is expanded in a series in degrees of a(k) and
a(k) [10]:

H =
∫ ∞

−∞
ω(k)a(k)a(k) dk +

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
V (k, k1, k2)(a(k)a(k1)a(k2)

+ a(k)a(k1)a(k2))δ(k − k1 − k2) dk dk1 dk2

+
1

3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
U(k, k1, k2)(a(k)a(k1)a(k2)

+ a(k)a(k1)a(k2))δ(k + k1 + k2) dk dk1 dk2

+
1

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
W(k, k1, k2, k3)a(k)a(k1)

× a(k2)a(k3)δ(k + k1 − k2 − k3) dk dk1 dk2 dk3. (2)

Hereafter the wavevectors k are denoted as scalars k for simplicity of notation (including
integration variables).

In the cases of infinite depth and finite arbitrary one, the expansion coefficients
V (k, k1, k2), U(k, k1, k2),W(k, k1, k2, k3) were determined in [3, 4] and [10], respectively.
We mention a number of works, for example [20–30] devoted to both these coefficients and
the development of the approach. We will present the relevant expressions following the
notations in [22] for the further calculations and the establishment of a correspondence with
the nonlinear coefficients obtained in [17] by the method of multiple scales:

V (k, k1, k2) = −V0(−k, k1, k2) − V0(−k, k2, k1) + V0(k1, k2, − k),

U(k, k1, k2) = V0(k, k1, k2) + V0(k, k2, k1) + V0(k1, k2,k),

V0(k, k1, k2) = −N0N1M2E
(3)
0,1, E

(3)
0,1 = − 1

2 · 2π
((k ·k1) + q0q1) ,

(3)

W(k, k1, k2, k3) = W0(−k,−k1, k2, k3) + W0(k2, k3,−k,−k1) − W0(−k, k2,−k1, k3)

−W0(−k1, k2,−k, k3) − W0(−k, k3,−k1, k2) − W0(−k1, k3,−k, k2),

W0(k, k1, k2, k3) = −2N0N1M2M3E
(4)
0,1,2,3,

E
(4)
0,1,2,3 = − 1

8 · (2π)2
(2|k|2q1 + 2|k1|2q0 − q0q1(q0+2 + q1+2 + q0+3 + q1+2)),

N(k) =
(

ω(k)

2q(k)

)1/2

, M(k) =
(

q(k)

2ω(k)

)1/2

, q(k) = |k| tanh(|k|h).

Varying Hamiltonian (2), we obtain the equation of motion for a(k, t) as the Hamilton
equation unified in the approximation ε3 for the standard Hamiltonian (2) as

∂

∂t
a(k, t) + i[ω(k)a(k) +

∫ ∞

−∞
V (k, k − ξ, ξ)a(ξ)a(k − ξ) dξ

+ 2
∫ ∞

−∞
V (k + ξ, k, ξ)a(ξ)a(k + ξ) dξ +

∫ ∞

−∞
U(−k − ξ, k, ξ)a(ξ)a(−k − ξ) dξ

+
∫ ∞

−∞

∫ ∞

−∞
W(ξ + ζ − k, k, ξ, ζ )a(ξ)a(ζ )a(ξ + ζ − k) dξ dζ ] = 0. (4)

3
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Note that the coefficient V is insensitive to the permutation of the second and third arguments,
since the second term of Hamiltonian (2) is symmetric with respect to the permutation of
integration variables k1 and k2. Similarly, U is insensitive to the permutation of its all
arguments, and W is insensitive to the permutation of the first and second arguments and (or)
the third and fourth arguments.

3. Equation of motion for the system of Fourier amplitudes of the
first and zero harmonics

Let the wave field represent a pulse of oscillating waves with the central wave vector k0. Then
the Fourier amplitude of the first harmonic and its conjugate quantity are concentrated near
the wave vector k0,

a1 = a1(k, t)δ(k − k0). (5)

Nonlinear terms of the equations of motion generate the non-oscillating component of a field
(the zero harmonic) and the second and higher harmonics. Their account will be conducted
by the expansion in the formal small parameter ε:

a = εa1 + ε2(b + a2). (6)

The zero harmonic and its conjugate are concentrated near the wave vector k = 0,

b → b(k, t)δ(k), b → b(k, t)δ(k), (7)

and the second harmonic

a2 = a21 + a22 (8)

consists of both a component of the wave field

a21 = a21(k, t)δ(k − 2k0), (9)

concentrated near the wave vector 2k0 and that

a22 = a22(k, t)δ(k + 2k0), (10)

concentrated near −2k0.

With the purpose to construct the approximate equations of motion for the Fourier
amplitudes of the lowest harmonics a1 and b, we substitute (6) into (4) and we collect terms
with the same degrees of ε.

3.1. The first order in ε

In the first order in ε, we obtain the equations of motion for the first harmonic in the linear
approximation as

∂

∂t
a1(k) + iω(k)a1(k) = 0. (11)

3.2. The second order in ε

In the order of ε2, the equations of motion for the zero and second harmonics look as
∂

∂t
a2(k) + iω(k)a2(k) +

∂

∂t
b(k) + iω(k)b(k) + i

∫ ∞

−∞
a1(ξ)V (k, k − ξ, ξ)a1(k − ξ) dξ

+ 2i
∫ ∞

−∞
a1(ξ)V (k + ξ, k, ξ)a1(k + ξ) dξ

+ i
∫ ∞

−∞
a1(ξ)U(k,−k − ξ, ξ)a1(−k − ξ) dξ = 0. (12)

4
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In the first nonlinear term in (12), we consider that it includes the first harmonics a1(ξ) and
a1(k − ξ) concentrated on the wave vector k0 (5). Therefore, ξ = k0 and k − ξ = k0. Hence,
the integration variable ξ is concentrated in a neighbourhood of k0 and the wave vector k, for
which this nonlinear term is different from zero, is 2k0. Thus, the first nonlinear term should
be grouped together with the linear term ∂

∂t
a21(k) + iω(k)a21(k), which is also concentrated

on the wave vector 2k0. Thus, we obtain the evolutionary equation for the first component
a21(k, t) of the Fourier amplitude of the second harmonic

2k0:
∂

∂t
a21(k) + iω(k)a21(k) + iV (2k0, k0, k0)

∫ ∞

−∞
a1(ξ)a1(k − ξ) dξ = 0. (13)

Similarly, we obtain the evolutionary equation for a22(k, t) and b(k, t) :

−2k0:
∂

∂t
a22(k) + iω(k)a22(k) + iU(−2k0, k0, k0)

∫ ∞

−∞
a1(ξ)a1(−k − ξ) dξ = 0, (14)

0:
∂

∂t
b(k) + iω(k)b(k) + 2iV (k0, k0, k)

∫ ∞

−∞
a1(ξ)a1(k + ξ) dξ = 0. (15)

Let us remark that in (15), V (k0, k, k0) is changed to V (k0, k0, k) taking into account a
symmetry of permutations of the second and third arguments V (k, k1, k2) in (3).

Equations (13) and (14) allow one to express the second harmonic through the first one in
order to remove the second harmonic from all formulas in the approximation ε3. For a21(k, t),
in view of the time dependence a21(k, t) ∼ e−2iω(k0)t , equation (13) yields

a21(k) = − V (2k0, k0, k0)

ω(2k0) − 2ω(k0)

∫ ∞

−∞
a1(ξ)a1(k − ξ) dξ. (16)

Taking the time dependence a22(k, t) ∼ e2iω(k0)t into account, it follows from equation (14)
that

a22(k) = − U(−2k0, k0, k0)

ω(2k0) + 2ω(k0)

∫ ∞

−∞
a1(ξ)a1(−k − ξ) dξ. (17)

We will not integrate equation (15) to avoid the additional assumptions about a character
of the dependence b(k) on time. Below, we will use (15) as the equation of motion for the
0-harmonic b(k) and include it in the system with the equation for the first harmonic a1(k)

which will be deduced in what follows.

3.3. The third order in ε

Here, we obtain the equation of motion for the first harmonic a1(k) in the ε3 approximation.
Nonlinear terms look as

i
∫ ∞

−∞
a2(ξ)V (k, k − ξ, ξ)a1(k − ξ) dξ + 2i

∫ ∞

−∞
a1(ξ)V (k + ξ, k, ξ)a2(k + ξ) dξ

+ i
∫ ∞

−∞
a1(ξ)V (k, k − ξ, ξ)a2(k − ξ) dξ

+ i
∫ ∞

−∞
a1(ξ)U(k,−k − ξ, ξ)a2(−k − ξ) dξ

+ 2i
∫ ∞

−∞
a2(ξ)V (k + ξ, k, ξ)a1(k + ξ) dξ

+ i
∫ ∞

−∞
a2(ξ)U(k,−k − ξ, ξ)a1(−k − ξ) dξ

5
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+ i
∫ ∞

−∞
a1(ξ)V (k, k − ξ, ξ)b(k − ξ) dξ

+ i
∫ ∞

−∞
b(ξ)V (k, k − ξ, ξ)a1(k − ξ) dξ

+ 2i
∫ ∞

−∞
a1(ξ)V (k + ξ, k, ξ)b(k + ξ) dξ

+ 2i
∫ ∞

−∞
b(ξ)V (k + ξ, k, ξ)a1(k + ξ) dξ

+ i
∫ ∞

−∞
a1(ξ)U(k,−k − ξ, ξ)b(−k − ξ) dξ

+ i
∫ ∞

−∞
b(ξ)U(k,−k − ξ, ξ)a1(−k − ξ) dξ

+ i
∫ ∞

−∞
a1(ζ )

∫ ∞

−∞
a1(ξ)W(k,−k + ξ + ζ, ξ, ζ )a1(−k + ξ + ζ ) dξ dζ (18)

We divide them into 5 groups.
(1) In the first three terms (18) which contain the second harmonic a2 we consider that it

consists of the component of a wave field a21 (9) concentrated in a neighbourhood of the wave
vector 2k0 and the component of a wave field a22 (10), concentrated in the region of −2k0,
the amplitude of the first harmonic and its conjugate being concentrated on the wave vector k0

(5). Arguing as in the derivation of (13), we can conclude that the kernels can be taken out of
the integrals:

iV (3k0, 2k0, k0)

∫ ∞

−∞
a1(ξ)a21(k − ξ) dξ + 2iV (2k0, k0, k0)

∫ ∞

−∞
a1(ξ)a21(k + ξ) dξ

+ iV (3k0, k0, 2k0)

∫ ∞

−∞
a1(ξ)a21(k − ξ) dξ

+ iV (−k0,−2k0, k0)

∫ ∞

−∞
a1(ξ)a22(k − ξ) dξ

+ 2iV (−2k0,−3k0, k0)

∫ ∞

−∞
a1(ξ)a22(k + ξ) dξ

+ iV (−k0, k0,−2k0)

∫ ∞

−∞
a1(ξ)a22(k − ξ) dξ. (19)

Moreover, these terms are concentrated at k equal to 3k0, k0, 3k0,−k0,−3k0 and −k0,
respectively. Further, we retain only the second term (19) as essential, because it is concentrated
on the wave vector k0 of the first harmonic, for which we will construct an evolutionary equation
of motion.

(2) Analogously, in the following three terms (18) which contain the conjugate of the
second harmonic a2, we take into account that it consists of the component of a wave field
a21 concentrated in the region of the wave vector 2k0 (a21 = a21(k, t)δ(k − 2k0)) and the
component a22 concentrated in a vicinity of −2k0 (a22 = a22(k, t)δ(k + 2k0)). This allows us
again to take out the kernels of the integrals:

iU(−3k0, 2k0, k0)

∫ ∞

−∞
a1(ξ)a21(−k − ξ) dξ + 2iV (k0, − k0, 2k0)

∫ ∞

−∞
a21(−k − ξ)a1(−ξ) dξ

+ iU(−3k0, k0, 2k0)

∫ ∞

−∞
a1(ξ)a21(−k − ξ) dξ

6
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+ iU(k0,−2k0, k0)

∫ ∞

−∞
a1(ξ)a22(−k − ξ) dξ

+ 2iV (k0, 3k0,−2k0)

∫ ∞

−∞
a22(−k − ξ)a1(−ξ) dξ

+ iU(k0, k0,−2k0)

∫ ∞

−∞
a1(ξ)a22(−k − ξ) dξ, (20)

These terms are concentrated at k equal to −3k0,−k0,−3k0, k0, 3k0 and k0, respectively. In
(20), the fourth and sixth terms are essential as they are concentrated on the wave vector k0 of
the first harmonic.

(3) In the following three terms (18) containing the zero harmonic b, we consider that it
is concentrated in a neighbourhood of the wave vector k = 0 (7), the amplitude of the first
harmonic and its conjugate being concentrated on the wave vector k0 (5). This allows us to
partially fix the arguments of kernels:

i
∫ ∞

−∞
a1(ξ)V (k0, k0 − ξ, k0)b(k − ξ) dξ + i

∫ ∞

−∞
a1(ξ)V (k0, k0, k0 − ξ)b(k − ξ) dξ

+ 2i
∫ ∞

−∞
a1(ξ)V (k0 + ξ, k0,−k0)b(k + ξ) dξ. (21)

Here, the first and second terms are concentrated at k = k0, whereas the third one is
concentrated at k = −k0. So we keep only the first and second terms.

(4) Analogously, in the following three terms (18) which contain the conjugate of the zero
harmonic b, we consider that it is concentrated on the wave vector k = 0 (5). This allows us
to partially fix the arguments of kernels:

2i
∫ ∞

−∞
b(ξ − k)V (k0, k0, ξ − k0)a1(ξ) dξ

+ i
∫ ∞

−∞
b(−k − ξ)U(k0,−k0 − ξ, k0)a1(ξ) dξ

+ i
∫ ∞

−∞
b(−k − ξ)U(k0, k0,−k0 − ξ)a1(ξ) dξ. (22)

Now the first term is concentrated at k = k0, and the second and third ones are concentrated
at k = −k0. Further, only the first term is kept as the main one.

(5) As for the last term (18), we consider that the amplitude of the first harmonic and its
conjugate are concentrated on the wave vector k0 (5). This allows us again to take out the
kernels of the integrals:

iW(k0, k0, k0, k0)

∫ ∞

−∞

∫ ∞

−∞
a1(ξ)a1(ζ )a1(−k + ξ + ζ ) dξ dζ. (23)

We now construct the equation of motion for the first harmonic from the linear terms
in the ε approximation (11) and from the above-mentioned basic nonlinear terms in the ε3

approximation from (19)-(22):

2iV (2k0, k0, k0)

∫ ∞

−∞
a1(ξ)a21(k + ξ) dξ + 2iU(−2k0, k0, k0)

∫ ∞

−∞
a1(ξ)a22(−k − ξ) dξ (24)

2i
∫ ∞

−∞
V (k0, k0, k0 − ξ)b(k − ξ)a1(ξ) dξ + 2i

∫ ∞

−∞
V (k0, k0, ξ − k0)b(ξ − k)a1(ξ)dξ (25)

and term (23). In these equations, we took the symmetry of the coefficients V (k1, k2, k3),

U(k1, k2, k3) relative to permutations of the arguments into account [10, 22]. Then we

7
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introduce the expressions for the components of the second harmonic a21 and a22 [(16), (17)]
given in terms of the first harmonic obtained in the ε2 approximation into (24). In such a way,
we obtain the equations of motion for the first harmonic:

∂

∂t
a1(k) + iω(k)a1(k) − 2i

(
V 2(2k0, k0, k0)

ω(2k0) − 2ω(k0)
+

U 2(−2k0, k0, k0)

ω(2k0) + 2ω(k0)

)
×

∫ ∞

−∞

∫ ∞

−∞
a1(ξ)a1(ζ )a1(ξ − ζ + k) dζdξ

+ 2i
∫ ∞

−∞
a1(ξ)[V (k0, k0, k0 − ξ)b(k − ξ) + V (k0, k0, ξ − k0)b(ξ − k)] dξ

+ iW(k0, k0, k0, k0)

∫ ∞

−∞

∫ ∞

−∞
a1(ζ )a1(ξ)a1(ξ + ζ − k) dξ dζ = 0

or
∂

∂t
a(k) + iω(k)a(k) + i

∫ ∞

−∞
a(ξ)[f (k0 − ξ)b(k − ξ) + f (ξ − k0)b(ξ − k)] dξ

+ iλ
∫ ∞

−∞

∫ ∞

−∞
a(ζ )a(ξ)a(ζ + ξ − k) dξ dζ = 0, (26)

where we denote

f (k) = 2V (k0, k0, k), (27)

λ = W(k0, k0, k0, k0) − 2

(
V 2(2k0, k0, k0)

ω(2k0) − 2ω(k0)
+

U 2(−2k0, k0, k0)

ω(2k0) + 2ω(k0)

)
(28)

and a1 is designated as a. In the same notations, we rewrite the equations for the 0-harmonic
(15) as

∂

∂t
b(k) + iω(k)b(k) + if (k)

∫ ∞

−∞
a(ξ)a(k + ξ) dξ = 0. (29)

Equations (26) and (29) coincide with equations (19) and (20) in [10], though they are
obtained by the somewhat different method, as compared with that in [10], of step-by-step
account of approximations. But there is one difference. Expression (27) for f (k) differs by
the sequence of arguments from formula (18), f (k) = 2V (k, k0, k0), in [10]. This difference
cannot be removed by using properties of the symmetry of coefficients [22]. This can be seen
from formula (3) for the coefficient V (k, k1, k2).

4. Modulation instability

We present the solution of the system of equations of motion (26) and (29) which contains the
correction on the nonlinearity as

a(k) = A0 e−it (ω(k0)+λ1A2
0)δ(k − k0), b(k) = λ2A2

0δ(k).

Substituting it in (26) and (29), we obtain

λ
(1)
1 = λ, λ

(1)
2 = 0, λ

(2)
1 = λ − 2

f 2(0)

ω(0)
, λ

(2)
2 = −f (0)

ω(0)
. (30)

For waves on the surface of a fluid at small �, ω(�) ∼ � and, as seen from (38), f (�) ∼ √
�.

The expression for λ
(2)
2 diverges, therefore we choose the first variant.
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We introduce a perturbation

a(k)= e−it (ω(k0)+λ1A2
0)(A0δ(k −k0) + εα(k) e−i�tδ(k −k0− �) + εα(k) ei�tδ(k −k0 + �)), (31)

b(k) = λ2A2
0δ(k) + εβ(k) e−i�tδ(k − �) + εβ(k) ei�tδ(k + �), (32)

where α(k) and β(k) are real quantities.
Let us explore a possibility of existence of the imaginary part of the frequency � for some

wave vectors of a perturbation wave � depending on the normalized depth of a fluid k0h, which
will testify the instability of a nonperturbed wave at such wave vectors of the perturbation.
After the substitution of (31) and (32) into the linearized equations of motion (26) and (29),
we obtain a system of homogeneous equations for α(k0 + �) and α(k0 − �), β(�) and β(−�):(
� + ω(k0 − �) − ω(k0) + λA2

0

)
α(k0 − �)

+ λA2
0α(k0 + �) + A0 [f (−�)β(−�) + f (�)β(�)] = 0,(

� − ω(k0 + �) + ω(k0) − λA2
0

)
α(k0 + �)

− λA2
0α(k0 − �) − A0 [f (−�)β(−�) + f (�)β(�)] = 0,

(� + ω(�)) β(−�) + A0f (−�) [α(k0 − �) + α(k0 + �)] = 0,

(� − ω(�)) β(�) − A0f (�) [α(k0 − �) + α(k0 + �)] = 0.

Excepting β(�) and β(−�), we obtain(
� + ω(k0 − �) − ω(k0) − λ(�)A2

0

)
α(k0 − �) − λ(�)A2

0α(k0 + �) = 0,(
� − ω(k0 + �) + ω(k0) + λ(�)A2

0

)
α(k0 + �) + λ(�)A2

0α(k0 − �) = 0,

where

λ(�) = −λ + λ(0)(�), (33)

λ(0)(�) = f 2(−�)

ω(�) + �
+

f 2(�)

ω(�) − �
. (34)

The superscript in λ(0)(�) underlines that it is the contribution to the nonlinear interaction
from the 0-harmonic. Equating the determinant to zero gives the required equation for the
perturbation frequency �

(� − δ)2 = �2 − 2λ(�)A2
0�, (35)

where

� = 1
2 (ω(k0 + �) + ω(k0 − �)) − ω(k0), δ = 1

2 (ω(k0 + �) − ω(k0 − �)).

In the extended form, relation (35) looks like

(� + ω(k0 − �) − ω(k0))(� − ω(k0 + �) + ω(k0)) = −2λ(�)A2
0� (36)

and coincides with that in [10].
The first term in (33) is calculated from (28). For waves on the surface of a fluid of finite

depth, we obtain

λ = k3
0

32π2

9σ 4 − 10σ 2 + 9

σ 3
, σ = tanh k0h. (37)

Let us calculate the second term in (33). To derive f (�) = 2V (k0, k0, �) according to
(27), we simplify the coefficient V (k, k1, k2) (3). We have

f (�) = k
3/2
0 ω

1/2
0

4
√

2π
√

σ

(
2

�

k0

√
ω0

ω(�)
+ (1 − σ 2)

√
ω(�)

ω0

)
. (38)
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Since our purpose is to investigate all four roots of equation (35), we do not approximate
� in the denominator in (34), as it was made in [10]. According to (34), we obtain

λ(0)(�) = k3
0

16π2σ

(
�2

ω2(�) − �2

(
2
ω0

k0
+ (1 − σ 2)

�

�

)2

+ (1 − σ 2)2

)
. (39)

4.1. � � k0. Comparison with the known results

In this case, we can approximate � in the denominator in (34). The asymptotes of four roots
�(�) of equation (36) at small � and A0 read

�1,2 = cg� ∓ 1

6

∂3ω(k0)

∂k3
�3, �3,4 = ±

√
gh�, cg = ω0

2k0

(
1 +

1 − σ 2

σ
k0h

)
,

(40)

where cg is the group velocity of linear waves. They are shown (after the normalization
�̂ = �

ω0
, �̂ = �

k0
) by dotted curves 1a, 2a, 3a, 4a on the plots of the real part Re �̂ in

figure 1. Setting the purpose to determine the imaginary part of the first two roots in the next
approximation in the case of � � k0, we can use the asymptote � = �cg in (39) (see also
[25, 30]). We get

λ(�) |�=cg�
= k3

0

16π2σ

(
−9σ 4 − 10σ 2 + 9

2σ 2
+

1

gh − c2
g

(
2
ω0

k0
+ (1 − σ 2)cg

)2

+ (1 − σ 2)2

)
.

(41)

Since � < 0 for a convex function ω(k) according to the Jensen inequality, equation (35) can
have complex roots, if λ(�) < 0. Coefficient (41) (obtained at f (�) = 2V (k0, k0, �)) changes
a sign at k0h = 1.363 that coincides with the depth at which the Benjamin–Feir MI disappears.
Some mismatch of (41) with formula (29) in [10] is related to the above-mentioned difference
in the sequence of arguments in (27).

We now compare (36) with the corresponding equation

(� + ω(k0 − �) − ω(k0))(� − ω(k0 + �) + ω(k0)) = −2q(�)A2
0�, (42)

obtained in [17] by the method of multiple scales from the Euler equations of motion. Here,

q(�) = q̃ + q(0)(�) (43)

q̃ = ω0k
2
0

16σ 2

(
−9σ 4 − 10σ 2 + 9

σ 2
+ 2

(
σ 2 − 1

)2
)

, (44)

q(0)(�) = ω0k
2
0

8σ 2

�2

ω2(�) − �2

(
2
ω0

k0
+ (1 − σ 2)

�

�

)(
2
ω0

k0
+ (1 − σ 2)cg

)
. (45)

and q(0)(�) is the contribution of the 0-harmonic to the nonlinear interaction. In the special
case considered above, � � k0, concerning two roots which correspond to the asymptote
� = �cg , from (45) we have

q(0)(�) |�=cg�
= ω0k

2
0

8σ 2

1

gh − c2
g

(
2
ω0

k0
+ (1 − σ 2)cg

)2

. (46)

Taking into account the formula A2
0 = σ

2π2
k0
ω0
A2

0 for the physical amplitude A0 and the
wave amplitude in the Fourier space A0, as well as relations (36) and (42), we should compare
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Figure 1. Real part of the normed frequency �̂ versus the normed wave vector �̂ for four roots
of equation (35) for various depths (respectively, from the top down): k0h = 10; 2, 1.363 and 1.
k0A0 = 0.2. The numbering of roots corresponds to that of their asymptotes at small � (40). The
asymptotes are drawn by dotted lines with a letter a near the number of a curve.

the coefficient λ(�) of the given paper with the coefficient q(�) in [17] multiplied by

σ

2π2

k0

ω0
. (47)
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Figure 2. The same as in figure 1 for the imaginary part of �̂.

It is seen that expression (43) for q(�) as the sum of (44) and (46) with regard for (47) is
identically equal to expression (41) for λ(�), which indicates the coincidence of results of the
given work and [17] in the case of � � k0.

4.2. � � k0. New instability

At arbitrary �, the numerical calculation of solutions of equation (35) is necessary. The
equation of the fourth order obtained in [10] was not solved numerically and was reduced to a
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Figure 3. Imaginary part of the normed frequency �̂ versus the normed wave vector �̂ for four
roots of equation (35) for various χ/k0 (respectively, from the left right): χ/k0 = 0.11; 0.1295;
0.43 and 0.44, k0h = 2, k0A0 = 0.2.

quadratic equation for a small deviation � from the resonance surface, ω(k0 + �) − ω(k0) =
ω(k0) − ω(k0 − �), for the analysis of the instability increment. The results of numerical
tabulation of the dependence of the real and imaginary parts of �̂ = �

ω0
on �̂ = �

k0
for four

solutions of equation (35) for several values of k0h for k0A0 = 0.2 are shown in figures 1 and
2. Indexing the roots corresponds to their asymptotes at small � ( 40). In figure 2, except
for the known band of instability at � � k0 (the Benjamin–Feir instability), we observe one
more section of instability at� � k0. The third band is the right edge of the known ‘eight’ of
Phillips [8]. Unlike the BF instability which disappears at k0h = 1.363, the additional band
of instability exists at this and smaller depths.

Let us make a comparison with the calculations by McLean (1982) for two-dimensional
wave vectors of perturbations. Restore the two-component notation for wave vectors k in
formula (35) (and also in formulae (34), (38), (39), (3) used therein). Introduce the same
designations as in the paper by McLean (1982): k0 = (k0, 0) for the carrier wave vector,
� = (κ, χ) for the perturbation vector, and p = κ

k0
, q = χ

k0
for the normalized perturbation

vectors. Figure 3 shows a comparison with figure 2(a) McLean (1982) for k0h = 2, k0A0 = 0.2
and q = 0.11, 0.1295, 0.43 and 0.44. The results agree for the most part. The additional
band (new instability) appears because we supposed that the zero harmonic evolves with the
velocity of slow waves which does not coincide with the group velocity of the first harmonic.
Full research on a case 3D and type II instability is supposed to be in a separate work. His
paper devotes to confirmation of the existence of the new instability at � � k0.

The essential role in the formation of new instability is played also by the first harmonic
a1 and the 0-harmonic b. Therefore the long-term evolution of the considered instability
can lead to the formation of structures intermediate between solitons of the envelope of fast
oscillations described by a nonlinear Schrödinger equation and solitary waves without a filling
characteristic of shallow water. This type of MI was specified in [17] on the basis of a system
of evolutionary equations for the zero and basic harmonics which was obtained by the method
of multiple scales from the Euler equations of motion. The reproduction of this result by the
Hamiltonian method indicates the validity of both approaches.
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